
易志然
助理研究员所在系所:振动、冲击、噪声研究所
电子邮件:yizhiran@sjtu.edu.cn
通讯地址:机动B楼502
个人主页:https://scholar.google.com.hk/citations?user=KkP9pgwAAAAJ&hl=zh-CN&newwindow=1
教育背景

工作经历

研究方向
1. 基础:压电动力学 Piezo-dynamics、非标准MEMS工艺技术研究
主要涉及:非线性压电动力学、感驱一体压电动力学、压电振动学、非标准压电MEMS工艺
2. 器件:压电MEMS传感器与驱动器
主要涉及:压电力学传感器、微型压电风扇、感驱一体智能传感器、触觉传感器、自供能传感
3. 应用技术1:高功率AI芯片风冷技术,消费电子主动风冷散热及微型压电MEMS散热器\制冷器
应用技术2:无运动伪影心脑血管健康监测,无运动伪影便携式连续血压监测系统(柔性恒力智能机构、恒力载荷约束策略)
应用技术3:无电池微系统,微型振动能量管理系统、无电池心脏起搏系统、无电池胎压监测系统
4. 新型技术:人工智能传感与驱动、仿生传感与驱动、新振动\噪声传感-俘获机制、新压电传感与驱动模式
学术兼职
1. Invited as guest editor in the Journal Micromechanics and Microengineering. https://iopscience.iop.org/collections/jmm-230608-256
2.《Chip》期刊(IF7.1)青年编委

3.《功能材料与器件》期刊青年编委

4. IEEE member、中国微米纳米技术学会会员、中国力学学会会员、中国振动工程学会会员
1. 第45期PRP 无桨流体泵
2. 第45期PRP 超薄压电散热及其流体力学机制
3. 第46期PRP 人形机器人触觉传感器
4. 第46期PRP 微型低频振动能量收集器及低风速能量俘获方法研究
5. 䇹政项目第十二期 基于激光雷达的非接触振动测量技术研究
科研项目
2025-2028 NSFC面上项目,无运动伪影脉搏传感压电动力学设计及便携式连续血压监测方法,负责人
2024-2026 上海市白玉兰人才计划浦江项目,人工智能驱动的超高机敏压电MEMS智能传感器动力学设计方法研究,负责人
2024-2026 交大之星计划医工交叉研究基金,基于柔性压电动力学的穿戴式连续血压监测系统临床验证研究,工科负责人
2024-2026 国家重点研发计划智能传感器专项,超低功耗纳机械热压阻传感器敏感元件研究,交大子任务负责人
2023-2026 上海交通大学新进青年教师启动计划,超薄微型压电MEMS散热器及限域空间振动噪声控制方法研究,负责人
2022-2024 NSFC青年项目,仿Piezo离子通道柔性压电传感器外载荷传递机理与力电耦合动态特性研究,负责人
2020-2022 博士后科学基金(特别资助),医护机械手柔性压电触觉传感器接触力学行为研究与验证,负责人
2020-2022 博士后科学基金(面上资助),植入式压电能量转换器屈曲动力学特性及类心脏瓣膜振动机理研究,负责人
2020-2021 高校间合作横向课题,微加工压电厚膜振动能量转换模块加工与测试,负责人
2022-2023 地方重点实验室开放基金,多孔压电陶瓷振动诱导高级氧化灭菌除臭技术研究,负责人
代表性论文专著
1. 第一或通讯作者身份发表的论文 (注:#共同第一作者,*通讯作者)
[32] Yu Fan, et al. Nonlinear Mode Coupling in MEMS Mirrors, Nonlinear Dynamics, 2025.
[31] 易志然*,张文明. 便携式连续血压监测技术研究现状及挑战, 功能材料与器件学报, 2025, 31(4): 261-271. DOI: 10.20027/j.gncq.2025.0033.
[30] Boyang Peng#, Zhiran Yi#*, Yu Fan, Xiuxuan Li, Xingyu Wei, Chenxi Wang, Xuying Chen, Jinghui Xu, Wenming Zhang*. Piezoelectric active air cooling devices. Chip, 2025, 100163.
https://doi.org/10.1016/j.chip.2025.100163

[29] 何庆塱, 徐若程, 易志然*, 张文明*. 界面电作用驱动的无桨泵研究进展与应用. 中国科学: 物理学 力学 天文学, 2025, DOI: 10.1360/SSPMA-2024-0478
[28] Zhiran Yi*, Shoulu Gong, Fuyi Fang, Xiuxuan Li, Junfeng Zhou, Xingyu Wei, Xiaoyong Fang, Lei Shao, and Wenming Zhang*. Sensor-actuator integration for Intelligent device, Device, 3 (4), 2025, 100717. Featured content
https://www.cell.com/device/abstract/S2666-9986(25)00030-4
报道1:Device | 易志然博士评述感驱一体器件系统智能化研究进展,https://mp.weixin.qq.com/s/8Zcat_CktuIWKO5N1VF1vA,
报道2:上海交大张文明教授团队Device综述文章:感驱一体器件智能化技术研究进展 | Cell Press论文速递,https://mp.weixin.qq.com/s/3mfkAXScuDlN9NKz1H0YcA
传感驱动一体正日益成为先进智能系统的重要发展趋势,主要聚焦于两个方面:智能驱动器和智能传感器。
智能驱动器的核心是驱动能力,其智能性通过集成传感器得以增强。以软体机器人为例,通过集成电子皮肤与机器学习算法,可实现智能软体机器人,其应用展示了软驱动器的潜力。其中,一个显著趋势是将大量柔性传感器集成到软驱动器中,以构建智能软体机器人,这种集成方式符合自然智能的底层机制。
智能传感器的核心在于获取感官信息,其智能性通常依赖于集成的驱动器(涉及智能材料、结构或控制系统)来实现自发信息获取。例如,基于智能材料的4D打印技术,常将温敏或光敏驱动器整合入传感器,实现自感知或自适应感知。为模仿人类抓握,可扩展触觉手套用于手部矩阵传感,这是研究自然智能的常用方法。尽管在仿生电子皮肤、脑活动图谱绘制等方面已付出巨大努力,但连接人工智能与自然智能之间仍存在巨大鸿沟。随着传感与驱动技术的飞速发展,人工智能正日益接近自然智能的复杂性并具备类似能力。
如今,人工智能技术几乎赋能万物。智能被定义为感知信息、将其转化为知识并应用于变化环境中适应性行为的能力。其核心特质包括学习能力与适应能力,这两者迄今主要存在于生物体。然而,随着人工智能技术的普及,人们正致力于在集成多元功能组件的复杂系统中实现学习与适应能力。超越此类功能架构,创造本身具备智能基本特征的新型物质(智能物质),将催生一种全新的人工智能概念——其不限于大语言模型或卷积神经网络等传统算法。传感驱动一体(SAI) 作为增强器件(传感器或驱动器)适应性的智能途径,虽非新概念,却在器件领域长期被忽视。人工智能技术的快速发展对设备适应性提出了迫切需求。作为物理世界与现实世界的连接与交互枢纽,传感器与驱动器的集成将提升其适应性,也顺应人工智能技术的发展需求。


2024
[27] Zhiran Yi, Dong Wu*, Yewang Su*, Bin Yang*, Ye Ma*, Ning Li, Yuanting Zhang, Wenming Zhang*, and Zuankai Wang*. Battery-less cardiac pacing using biomechanical energy harvesting. Device, 2024, 2(11), 100471. https://www.cell.com/device/abstract/S2666-9986(24)00346-6

[26] Shoulu Gong#, Fuyi Fang#, Zhiran Yi*, Bohan Feng, Anyu Li, Wenbo Li, Lei Shao*, and Wenming Zhang*. An intelligent spinal soft robot with self-sensing adaptability [J]. The Innovation, 2024, 5(4): 100640.

[25] Zhiran Yi, Penghui Song, Xiuxuan Li, Wenming Zhang. Observation of Energy Orbit Jumping in a Buckled Energy Harvester. In: Tang, L., Aw, K., Hu, G., Wang, J. (eds) The 5th International Conference on Vibration and Energy Harvesting Applications (VEH 2024). VEH 2024. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-96-1191-1_5.

2023
[24] Huanxi Zheng#, Hao Wu#, Zhiran Yi#, Yuxin Song, Wanghuai Xu, Xiantong Yan, Xiaofeng Zhou, Steven Wang, Zuankai Wang*, Remote-Controlled Droplet Chains-Based Electricity Generators. Advanced Energy Materials, 2023, 2203825.
[23] Zhiran Yi, Xiong Wang, Wanbo Li, Xuezhi Qin, Yang Li, Kaiqiang Wang, Yunting Guo, Xing Li, Wenming Zhang, and Zuankai Wang*. Interfacial friction at action: interactions, regulation, applications. Friction (2023): 1-28. https://link.springer.com/article/10.1007/s40544-022-0702-x

2022
[22] Zhiran Yi, Zhaoxu Liu, Wenbo Li, Tao Ruan, Xiang Chen, Jingquan Liu, Bin Yang*, and Wenming Zhang*. Piezoelectric dynamics of arterial pulse for wearable continuous blood pressure monitoring. Advanced Materials, 2022, 34(16): 2110291. ESI高被引,Google引用220多次.
https://advanced.onlinelibrary.wiley.com/doi/full/10.1002/adma.202110291

[21] Zhiran Yi, Wenming Zhang*, and Bin Yang*. Piezoelectric approaches for wearable continuous blood pressure monitoring: a review. Journal of Micromechanics and Microengineering, 2022, 32(10): 103003.
2021
[20] Zhiran Yi, Bin Yang*, Yadong Wu, Wenming Zhang, and Jingquan Liu. Batteryless Tire Pressure Real-Time Monitoring System Driven by an Ultralow Frequency Piezoelectric Rotational Energy Harvester. IEEE Transactions on Industrial Electronics, 2021(68):3192-3201.

[19] Minglu Zhu#, Zhiran Yi#, Bin Yang*, Chengkuo Lee*. Making use of nanoenergy from human – Nanogenerator and self-powered sensor enabled sustainable wireless IoT sensory systems. Nano Today, 2021(36): 101016.
[18] Zhiran Yi, Wenming Zhang*, and Bin Yang*. Flexible piezo-MEMS fabrication process based on thinned piezoelectric thick film. The 34th IEEE International Conference on micro-electro-mechanical systems (IEEE MEMS), 25-29 January 2021, Virtual Conference.
https://ieeexplore.ieee.org/abstract/document/9375198

[17] Zhiran Yi. Mechanism on Buckled Piezoelectric Energy Harvesting for Batteryless Heart-worn Pacemaker. AIP Publishing Horizons-Applied Physics Reviews-Energy Storage and Conversion, 4-6 August 2021, Virtual Conference.
https://publishing.aip.org/publications/latest-content/batteryless-pacemaker-could-use-hearts-energy-for-power/

2020
[16] Zhiran Yi#, Feng Xie#, Yingwei Tian, et al. A Battery- and Leadless Heart-Worn Pacemaker Strategy. Advanced Functional Materials, 2020(30):2000477. https://advanced.onlinelibrary.wiley.com/doi/full/10.1002/adfm.202000477

[15] Zhiran Yi#, Jiajie Huang#, Zhaoxu Liu, Jingquan Liu, and Bin Yang*. Portable, Wireless Wearable Piezoelectric Arterial Pulse Monitoring System Based on Nearfield communication approach. IEEE Electron Device Letters, 2020(41):183-186.
https://ieeexplore.ieee.org/abstract/document/8908791

2019
[14] Yili Hu#, Zhiran Yi#, Xiaoxue Dong, Fangxiao Mou, Yingwei Tian, Qinghai Yang, Bin Yang*, Jingquan Liu*. High power density energy harvester with non-uniform cantilever structure due to high average strain distribution[J]. Energy, 2019(169): 294-304.
[13] Ning Li#, Zhiran Yi#, Ye Ma#, Feng Xie, Yue Huang, Yingwei Tian, Xiaoxue Dong, Yang Liu, Xin Shao, Yang Li, Lei Jin, Jingquan Liu, Zhiyun Xu, Bin Yang*, and Hao Zhang*. Direct Powering a Real Cardiac Pacemaker by Natural Energy of a Heartbeat. ACS Nano, 2019(13): 2822-2830.
https://pubs.acs.org/doi/full/10.1021/acsnano.8b08567
[12] Zhiran Yi, Xiaoxue Dong, Wenbin Zhang, Yingwei Tian, Lingchao Kong, Jingquan Liu, Ruihong Liang, and Bin Yang*. Controllable Nonlinear Effect for Stable and Broad Bandwidth Piezoelectric Energy Harvester. The 2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems (IEEE Transducers) & Eurosensors XXXIII, 23-27 June 2019, Berlin, Germany.
[11] Zhiran Yi, Yingwei Tian, Xiaoxue Dong, Jingquan Liu, and Bin Yang*. Vertically Integrated Double Buckled-Bridge for Softening Nonlinear Piezoelectric Energy Harvester. The 2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems (IEEE Transducers) & Eurosensors XXXIII, 23-27 June 2019, Berlin, Germany.
[10] Zhiran Yi, Lingchao Kong, Yingwei Tian, Xiaoxue Dong, and Bin Yang*. High Performance Flexible Piezoelectric Buckled-Bridge Rational Energy. The 2nd International Conference on Vibration and Energy Harvesting Application (VEH 2019), 13-15 July 2019, Shanghai, China. (Best student poster award Second Runner-Up)
2018
[9] Zhiran Yi, Yili Hu, Bowen Ji, Jingquan Liu, and Bin Yang*. Broad Bandwidth Piezoelectric Energy Harvester by a Flexible Buckled Bridge. Applied Physics Letters, 2018(113): 183901.
[8] Guimiao Li#, Zhiran Yi#, Yili Hu, Jingquan Liu, and Bin Yang*. High Performance Low-Frequency Mems Energy Harvester via Partially Covering PZT Thick Film. Journal of Micromechanics and Microengineering, 2018(28):095007.
[7] Zhiran Yi, Hanjia Yang, Yingwei Tian, Xiaoxue Dong, Jingquan Liu, and Bin Yang*. Self-Powered Force Sensor Based on Thinned Bulk PZT for Real-Time Cutaneous Activities Monitoring. IEEE Electron Device Letters, 2018(39): 1226- 1229.
[6] Zhiran Yi, Bin Yang*, Yingwei Tian, Xiaoxue Dong, Xiang Chen, Xiaolin Wang, and Jingquan Liu. Self-Powered, High-Sensitive Human Cutaneous Activities Sensor. The 2018 IEEE 13th Annual International Conference on Nano/Micro Engineered and Molecular Systems (IEEE NEMS), 22-26 April 2018, Singapore. (Finalist of best oral paper award)
2017
[5] Zhiran Yi, Yu Lei, Xianyun Zhang, Yining Chen, Jianjun Guo*, Gaojie Xu, Min-Feng Yu, Ping Cui. Ultralow flexural properties of copper microhelices fabricated via electrodeposition-based three-dimensional direct-writing technology. Nanoscale, 2017(34):12524-12532.
[4] Zhiran Yi, Bin Yang*, Guimiao Li, Jingquan Liu, Xiang Chen, Xiaolin Wang, and Chunsheng Yang. High Performance Bimorph Piezoelectric MEMS Harvester via Bulk PZT Thick Films on Thin Beryllium-Bronze Substrate. Applied Physics Letters, 2017(111): 013902.
[3] 易志然,胡意立,杨斌*,阶梯梁式压电振动能量转换器的输出特性研究与结构优化,《中国力学大会-2017暨庆祝中国力学学会成立60周年大会论文集》,2017年8月13-16日,北京,中国.
2016
[2] Zhiran Yi, Jianjun Guo*, Yining Chen, Haiqing Zhang, Shuai Zhang, Min-feng Yu, Gaojie Xu, Ping Cui. Vertical, Capacitive Microelectromechanical Switch Produced via Direct writing Cu Wires. Microsystems & Nanoengineering, 2016(2): 16010.
[1] 易志然,郭建军,许高杰. 基于电化学沉积原理的直写高密度铜微米线列. 第十四届中国国际纳米科技研讨会. 成都. 2015年10月25-29日. 纳米科技,西安,中国.
2. 专著
[1] Bin Yang, Zhiran Yi, and Chengkuo Lee. Flexible piezoelectric energy harvesters and sensors. ISBN: 978-3-527-34934-0, Wiley-VCH, 2022.

2024-12 上海市白玉兰人才计划(浦江项目)
2024-11 中国国际大学生创新大赛 金奖 共同指导老师
2024-08 第一届国际人工智能传感(AI Sensor)大会 最佳海报奖
2024-06 第五届振动与能量俘获及其应用国际会议(VEH 2024 新西兰) Best Paper Award in Dynamics Honorable Mention
2023-10 全国博士后创新创业大赛银奖(海外)
2023-10 全国创新创业优秀博士后称号
2021-03 香港创新科技署优秀人才支持计划
2021-02 上海交通大学海外博士后师资储备项目支持计划
2020-06 上海交通大学优秀毕业生
2019-12 上海交通大学学术之星提名奖
2019-07 第二届振动与能量俘获及其应用国际会议Best Student Poster Award Second Runner-Up.
2018-04 第十三届IEEE纳米/微米工程与分子系统大会Finalist of Best oral paper award