吴振华

助理研究员

所在系所:制造技术与装备自动化研究所

电子邮件:wuzhenhua@sjtu.edu.cn

个人主页:

个人简介
科研工作
荣誉奖励

教育背景

2015.09-2020.03  上海交通大学  电子科学与技术 博士

2012.09-2015.06  武汉科技大学  冶金工程 硕士

2008.09-2012.06  武汉科技大学  冶金工程 学士


工作经历

2023.04-至今       上海交通大学  新利体育   助理研究员

2020.08-2023.03      上海交通大学  仪器科学与技术    博士后


研究方向

热、电、光能量转换(可穿戴自供电、芯片冷却、智能传感)

二维材料与器件(感、存、算一体)

阻变存储器(RRAM)、忆阻器

MOCVD、MBE等外延生长技术


指导或协助学生先后获得:国家自然科学基金青年项目(2人)、上海市杨帆计划(1人)、研究生国家奖学金(1人)、上海市优秀毕业生(2人) 等荣誉。


2026年课题组招收硕士/博士研究生,博士后,欢迎感兴趣的同学邮件联系!


学术兼职

Carbon Neutrality期刊 青年编委(上海交通大学& Springer Nature出版社,2025年IF=12.5

Materials Futures期刊 青年编委(松山湖材料实验室/英国IOP出版社,2025年IF=10.8

Microstructures 期刊 青年编委 (美国OAE出版社,2025年 IF=9.0

Nanoscale Horizons 期刊 青年顾问编委(英国皇家化学学会(RSC)出版社,2025年 IF=6.6

Micromachines 期刊 客座编辑 (2期)     


中国微米纳米技术学会(CSMNT)高级会员


期刊审稿人: Nano Energy, Materials Horizons, Nanoscale Horizons, Nanoscale, Energy, Carbon Neutrality, ACS Materials Letters, Chemical Engineering Journal, ACS Applied Materials & Interfaces, Journal of Colloid and Interface Science, Space Science &Technology, ACS Applied Electronic Materials, ACS Applied Nano Materials, Organic Electronics, Nanotechnology, The Journal of Physical Chemistry, Journal of Physics D: Applied Physics, ECS Journal of Solid State Science and Technology, Materials Advances, et al.


亮点工作

1. 低维材料生长与微纳结构调控:系统调控低维材料的生长动力学及其光子-声子-电子输运行为,支撑微纳功能器件制造。

l   开发高效多层二维热电薄膜,显著降低热导率~0.15Wm-1K-1,提高热电性能

l   设计多维光子晶体辐射制冷材料(夏日正午由42°C降温10°C)

l   首次在实验上实现理论预测中的二维TMD六方相PdSe₂的生长

l   首创光子晶体催化定制纳米级红外光源定向增强发射


2. 先进MEMS工艺与多功能集成器件:结合材料生长,突破晶圆级微纳加工技术,研制出国际首例集成度最高的晶圆级芯片式热电薄膜阵列器件(相关成果被Science期刊评价为“具有挑战性的工作”),并拓展其在高效制冷、智能传感与可持续发电等多领域的应用。

l   片上微区冷却:实现局部热流达600 K/mm的高效热电冷却

l   智能传感:高灵敏图像、声音、颜色、织物、材质、光波长、微气流等多信号精确识别

l   发电:光热-热电-辐射制冷全天自发电(可穿戴电子供能)、热电-核电、热电-分子太阳能


相关研究成果在《Science》等国际高水平期刊获得多次引用,其中MEMS热电芯片的应用研究被《上海科技报》(2021年)专题报道,并被GE News评为“本周地球上最酷的5项技术”,受邀在瑞典皇家工程科学院2022年年会上作为年度亮点向瑞典国王及全体院士汇报,获世界经济论坛短视频推广,并被瑞典国家电视台、《泰晤士报》等全球800余家媒体广泛报道,累计阅读量超过10亿次,被发函关联到联合国可持续发展目标7(UN-SDGs 7)。


科研项目

2023.01-2025.12 国家自然科学基金青年项目(MEMS微热传感,62201345),主持

2021.01-2022.06 国家级X科创基金(热薄膜),骨干

2018.01-2021.12 国家自然科学基金面上项目(MEMS热电-光伏,51776126), 结题优秀,参与

2017.01-2018.12 国家级X预研项目(热电源),骨干

2016.01-2017.12 全国重点实验室科技创新专项(薄膜热/电学输运),参与

2012.01-2014.12 湖北省自然科学基金创新群体资助项目(2008CDA010)(微纳米氧化物冶金),  参与


代表性论文专著

专著/章节

[1]     胡志宇,吴振华,第四章:热电转换之多层薄膜与器件;碳中和的关键问题与颠覆性技术[M]. 清华大学出版社,2023/03,ISBN: 978-7-302-62109-6。(获选参加2023年德国第75届法兰克福书展与2023北京国际图书博览会暨21届北京国际图书节)

[2]     Zhiyu Hu, Zhenhua Wu. Nanostructured Thermoelectric Films [M], Springer Singapore, 2020/07, ISBN: 978-981-15-6517-5。eBook ISBN: 978-981-15-6518-2。(国家“一带一路”文化发展基金支持,国家版权出口,授权Springer - Nature出版集团在世界出版发行)

[3]     胡志宇,吴振华. 纳米构建热电薄膜[M],上海交通大学出版社, 2020/08, ISBN:978-7-313-23411-7。 (未来能源技术系列丛书)


论文 (h-index=20,引用1500余次)

[1] 以(共同)第一/通讯作者在Science Advances、The Innovation、Advanced Energy Materials、Advanced Functional Materials、Nano Energy、Nano Research、Applied Physics Letters等SCI期刊发表论文24篇(ESI高被引2篇)

[2] 合作在Nature Reviews Methods Primers、Adv. Mater.、Nano Lett.、Small、Acta Mater.、Chem. Eng. J等期刊发表论文18篇(ESI热点论文1篇)

[3] 国际会议论文4篇(EI收录2篇)


主要论文列表

[1]     Z. Yao†, Z. Guan†, S. Zhang, J. Zeng, X. Zhang, Z. Wu*(通讯), Z. Hu*, Towards energy-autonomous wearables: Multimodal harvesting technologies and sustainable applications, The Innovation Materials, 2025, 3(3), 100143. (封面导读)

[2]     Z. Yu†, Z. Wu†(共一), B. Cai†, K. W. See, M. Li, J. Hu, Y. Zhang, M. Gu, Z. Yue*. Plasmon-enhanced Ag/Sb2Te3 quantum dots fluorescence. Applied Physics Letters, 2025, 126(17), 171103. (Editor’s Pick)

[3]     S. Zhang†, Z. Liu†, Z. Wu*(通讯), Z. Yao, W. Zhang, Y. Zhang, Z. Guan, H. Lin, H. Cheng, E. Mu, J. Zeng, C. Dun*, X. Zhang*, J. C. Ho, Z. Hu*. Boosting self-powered wearable thermoelectric generator with solar absorber and radiative cooler. Nano Energy, 2024, 132, 110381. (IF:17.6)

[4]     Z. Liu†, S. Zhang†, Z. Wu*(通讯), X.-E. Wang, K. Zou, Z. Zhu, X. Wang, E. Mu, X. Zhang, Y. Liu, H. Shi, Z. Hu*. Visual-audio thermoelectric detectors for images and sounds recognition. Advanced Functional Materials, 2024, 34(46), 202406110.(IF:19)

[5]     S. Zhang†, Z. Liu†, X. Zhang, Z. Wu*(通讯), Z. Hu*. Sustainable thermal energy harvest for generating electricity. The Innovation, 2024, 5(2), 100591. (Cell Press合作中国科技期刊,期刊推荐, 封面导读)(IF:25.7)

[6]     S. Zhang†, Z. Liu†, W. Zhang, B. Zhao, Z. Wu*(通讯), E. Mu, H. Lin, K. Zou, X. Zhang, Z. Hu*. Multi-bioinspired flexible thermal emitters for all-day radiative cooling and wearable self-powered thermoelectric generation. Nano Energy, 2024, 123, 109393.  (ESI高被引,IF: 17.6)

[7]     Z. Wu, Z. Wu, H. Lv, W. Zhang, Z. Liu, S. Zhang, E. Mu, H. Lin, Q. Zhang*, D. Cui, T. Thundat, Z. Hu*. Nanophotonic catalytic combustion enlightens mid-infrared light source. Nano Research, 2023, 16(9), 11564-11570. (IF: 9.9) (中国科技期刊卓越行动计划-领军期刊,期刊推荐)

[8]     Z. Liu†, S. Zhang†, Z. Wu*(通讯), E. Mu, H. Wei, Y. Liu, H. Shi, Z. Hu*. High-performance integrated chip-level thermoelectric device for power generation and microflow detection. Nano Energy, 2023, 114, 108611. (IF: 17.6)

[9]     S. Zhang†, Z. Wu†(共一), Z. Liu, Z. Hu*. An emerging energy technology: self-uninterrupted electricity power harvesting from the sun and cold space. Advanced Energy Materials, 2023, 13, 202300260.  (IF: 27.8)

[10]   S. Luo, S. Zhang, H.Yuan, Z. Wu*(通讯), M. Li*. 3D hierarchically branched Cu2S/ZnO heterojunction nanowire arrays for enhanced solar water splitting. Materials Today Communications, 2023, 34, 105417. 

[11]   Z. Wu, S. Zhang, Z. Liu, E. Mu, Z. Hu*. Thermoelectric converter: Strategies from materials to device application. Nano Energy, 2022, 91, 106692.(IF: 17.6) (ESI高被引)

[12]   Z. Liu†, Z. Wu† (共一), S. Zhang, Y. Lv, E. Mu, R. Liu, D. Zhang, Z. Li, Z. Hu*. Recognitions of colored fabrics/laser-patterned metals based on photo-thermo-electric effects. Science Advances, 2022, 8(33), eabo7500.  (IF: 13.6) (Science子刊)

[13]   Z. Wu, Z. Liu, S. Zhang, E. Mu, Z. Hu*. Interfacial modulated growth of nanostructured Bi2Te3 films for enhancing thermoelectric performance. Physica Status Solidi A-Applications and Materials Science, 2022, 219(16), 2200108. (封面论文)

[14]   Z. Wu, Z. Hu*. Perspective−Powerful micro/nano-scale heat engine: Thermoelectric converter on chip. ECS Sensor Plus, 2022, 1, 023402. (创刊邀稿)

[15]   S. Zhang†, Z. Wu† (共一), Z. Liu, E. Mu, Y. Liu, Y. Lv, T. Thundat, Z. Hu*. Power generation on chips: Harvesting energy from the sun and cold space. Advanced Materials Technologies, 2022, 7(12), 202200478. (AdvancedScienceNews推荐, Wiley)

[16]   S.Zhang†, Z. Wu† (共一), Z. Liu, Y. Lv, Z. Hu*. Nanostructured broadband solar absorber for effective photothermal conversion and electricity generation. Energies, 2022, 15(4), 1354. 

[17]   Z. Wu, Y. Feng, Y. Liu, H. Shi, S. Zhang, Z. Liu, Z. Hu*. Bipolar resistive switching in the Ag/Sb2Te3/Pt heterojunction. ACS Applied Electronic Materials, 2021, 3(6), 2766-2773. 

[18]   Z. Wu, S.Zhang, Z. Liu, C. Lu, Z. Hu*, Bottom-up (Cu, Ag, Au)/Al2O3/Bi2Te3 assembled thermoelectric heterostructures. Micromachines, 2021, 12(5), 480.

[19]   Z. Wu, L. Lu, X. Liang, C. Dun, S. Yan, E. Mu, Y. Liu, Z. Hu*. Formation of hexagonal PdSe2 for electronics and catalysis. Journal of Physical Chemistry C, 2020, 124(20), 10935-10940. 

[20]   Z. Wu, E. Mu, Z. Che, Y. Liu, F. Sun, X. Wang, Z. Hu*. Nanoporous (00l)-oriented Bi2Te3 nanoplate film for improved thermoelectric performance. Journal of Alloys and Compounds, 2020, 828, 154239. 

[21]   Z. Wu, X. Chen, E. Mu, Y. Liu, Z. Che, C. Dun, F. Sun, X. Wang, Y. Zhang, Z. Hu*. Lattice strain enhances thermoelectric properties in Sb2Te3/Te heterostructure. Advanced Electronic Materials,2019, 6, 1900735. 

[22]   Z. Wu, E. Mu, Z. Wang, X. Chen, Z. Wu, Y. Liu, Z. Hu*. Bi2Te3 nanoplates’ selective growth morphology on different interfaces for enhancing thermoelectric properties. Crystal Growth & Design, 2019, 19(7), 3639-3649. 

[23]  Z. Wu, X. Chen, Y. Zhang, C. Dun, D. L. Carroll, Z. Hu*. In situ electrical properties’ investigation and nanofabrication of Ag/Sb2Te3 assembled multilayers’ film. Advanced Materials Interfaces, 2018, 5(4), 1701210. 

[24]   Z. Wu, W. Zheng, G. Li*, H. Matsuura, F. Tsukihashi.Effect of inclusions’ behavior on the microstructure in Al–Ti deoxidized and magnesium treated steel with different aluminum content. Metallurgical and Materials Transactions B-Process Metallurgy and Materials Processing Science, 2015, 46(3), 1226-1241. 

[25]   Z. Wang, Z. Wu, Z. Hu*, J. Orrego-Hernández, E. Mu, Z. Zhang, M. Jevric, Y. Liu, X. Fu, F. Wang, T. Li*, K. Moth-Pouslen*. Chip-scale solar thermal electrical power generation. Cell Reports Physical Science, 2022, 3(3), 100789.  (IF: 8.9) (Cell子刊)关联到联合国可持续发展目标7(UN-SDGs 7),助力于解决世界上最严峻的挑战。 (CRPS’ “Hot papers-2022”和“Impactful research”, GE News报道“本周地球上最酷的5件事”,瑞典皇家工程科学院2022年会年度“亮点”向瑞典国王和全体院士汇报,世界经济论坛短视频宣传,全球800+媒体(瑞典国家电视台、《泰晤士报》等)报道,阅读量超10亿次,Altmetric指数532)

[26]   L. Xu, Z. Wu, Y. Han, M. Wang, J. Li, C. Chen, L. Wang, Y. Yuan, L. Shi, J. M. Redwing, X. Zhang*. Pseudosymmetric Epitaxy for Scalable Growth of Uniform Two-Dimensional Ferroelectric α-In2Se3 Monolayer. Nano Letters. 2025, 25(20), 8423-8430.(IF: 9.6)

[27]  E. Mu, Z. Wu, Z. Wu, X. Chen, Y. Liu, X. Fu, Z. Hu*. A novel self-powering ultrathin TEG device based on micro/nano emitter for radiative cooling. Nano Energy, 2019, 55, 494-500.  (IF: 17.6)(Science引文评价具有挑战的工作

[28]  W. Zheng, Z. Wu, G. Li*, Z. Zhang, C. Zhu. Effect of Al content on the characteristics of inclusions in Al-Ti complex deoxidized steel with calcium treatment.ISIJ International, 2014, 54(8), 1755-1764. 

[29]  Y. Liu, E. Mu, Z. Wu, Z. Che, F. Sun, X. Fu, F. Wang, X. Wang, Z. Hu*. Ultrathin MEMS thermoelectric generator with Bi2Te3/(Pt, Au) multilayers and Sb2Te3 legs. Nano Convergence, 2020, 7, 8. (IF: 11.7)

[30]  Y. Hou, W. Zheng, Z. Wu, G. Li*, N. Moelans*, M. Guo, B. Shahzad Khan. Study of Mn absorption by complex oxide inclusions in Al-Ti-Mg killed steels. Acta Materialia, 2016, 118(1), 8-16. (IF: 9.4)

[31]   Z. Guan, Z. Tang, Z. Yao, Z. Wu, J. Zeng, X. Liu, Z. Hu*. Restricting planar chromophores to achieve long-lived, high color purity, colorful triplet excitons. Chemical Engineering Journal, 2025, 519, 165181. (IF: 13.2)

[32]   X. Zhang*, N. Trainor, T. V. Mc Knight, A. R. Graves, Z. Wu, L. Xu, X. Zheng, T. Zhang, J. Zhu, T. Palacios, J. Kong, B. Groven, B. Tian, C. Duan, J. Chu, J. M. Redwing*. Metalorganic Chemical Vapor Deposition for 2D Chalcogenides. Nature Reviews Methods Primers, 2025, 5, 57. (Nature子刊,IF:56)

[33]   X. Duan, Z. Cao, K. Gao, W. Yan, S. Sun, G. Zhou, Z. Wu, F. Ren, B. Sun*. Memristor-based neuromorphic chips. Advanced Materials, 2024, 36, 2310704.  (ESI高被引, Hot paper, IF: 29.4)

[34]   C. Yang, H. Wang*, Z. Cao, X. Chen, G. Zhou, H. Zhao, Z. Wu, Y. Zhao, B. Sun*. Memristor-based bionic tactile devices: opening the door for next-generation artificial intelligence. Small, 2024, 20(19), 2308918.  (IF: 13.3)


软件版权登记及专利

授权发明专利

[1]    可编辑超薄纵向多层串联结构热电薄膜和热电器件单元,专利号:ZL 201710232389.6

[2]    一种光子晶体催化反应的微纳尺度红外光源及其应用,专利号:ZL 202211340970.7

[3]    一种可穿戴自供电多功能传感器及可穿戴监测设备,专利号:ZL 202110565522.6

[4]    一种微型核能自供电集成电路芯片及其制备方法,专利号:ZL 201811523977.6

[5]    一种具有空气隔热层的微型多层隔热结构及其制备和应用,专利号: ZL 202111490140.8

[6]    一种二维过渡金属硫族化合物及其制备和应用,专利号:ZL 202211345215.8

[7]    一种放射性同位素核电池薄膜及其制备方法,专利号:ZL 202210836680.5

[8]    一种模块化微型核电源、以及微型核电源装置,专利号:ZL 202210836670.1

[9]   一种基于辐射伏特效应和热电转换效应的芯片级核电池及其应用,专利号:ZL 202210836043.8

[10  一种多孔氧化铝/聚苯胺光热材料及其制备方法和应用,专利号:ZL 202110534757.9

[11]  一种高灵敏风速传感器及试验设备,专利号:ZL 202210805187.7

[12]  基于薄膜热电器件的多颜色多材料光热传感器及试验设备,专利号:ZL 202110567316.9


2025.07    上海交通大学教学成果奖,二等奖   (依托《芯片发电技术基础与应用探索》课程培养半导体芯片拔尖人才的探索与实践) ,排名4/10

2024.07    美国硅谷国际发明节(SVIIF),金奖(Micro/nano TE chip),排名2/9

2024.04    第49届日内瓦国际发明展,银奖(Technologie des micro/nano-te),排名2/9

2023.08    “IAAM Scientist Award”by International Association of Advanced Materials (Sweden)

2023.08    中国大学生机械工程创新创意大赛“明石杯”微纳传感技术与智能应用赛, 二等奖(研究生组),指导教师(排名2/2)

2020.12    上海市博士后日常经费资助计划(2020.08-2022.07,上海市人社局资助,1/97)